Hydrogen: From a Biologically Inert Gas to a Unique Antioxidant

نویسندگان

  • Shulin Liu
  • Xuejun Sun
  • Hengyi Tao
چکیده

Hydrogen gas (H2), a colorless, tasteless, odorless, non-irritating and highly flammable diatomic gas, has been used in medical applications to prevent decomposition sickness in deep divers. For a long time, H2 was thought to be a “biologically inert gas” which could not react with biomolecules under normal pressure. In 2007, Ohsawa et al. first reported that inhalation of H2 markedly suppressed brain injury induced by ischemia-reperfusion, which made the antioxidant properties of H2 drew wide attention (Ohsawa et al., 2007). Soon afterwards H2 was found to be effective for many other diseases, including hepatic and cardiac hypoxia-ischemia injury, inflammation injury caused by small intestine transplantation, neonatal hypoxia–ischemia injury, and lung allograft, (Fukuda et al., 2007; Buchholz et al., 2008; Cai et al., 2008; Hayashida et al., 2008; Kawamura et al., 2011;). Besides, other ways to administrate H2, such as drinking H2-saturated water, intraperitoneal and intravenous injection of H2-saturated saline (first developed by our group), have also been proved to be effective to many disorders related with oxidative stress, such as cerebral hypoxia-ischemia injury, human typeII diabetes, nephrotoxicity induced by cisplatin, Parkinson’s disease and atherosclerosis in apolipoprotein (Cai et al., 2009; Chen et al., 2009; Mao et al., 2009; Sun et al., 2009; Zheng et al., 2009; Oharazawa et al., 2010). Up to now, H2 has been proved to be effective to various disease models. Considering the unique antioxidant properties of H2, we believe it is important to review the medical researches of this novel antioxidant in this chapter. The aim of this chapter is to summarize research findings and mechanisms concerning the therapeutic potential of H2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transfer of hydrogen from inert gas to therapeutic gas

Hydrogen is the most abundant chemical element in the universe, and has been used as an inert gas for a long time. More recent studies have shown that molecular hydrogen as a kind of antioxidant, anti-inflammatory, anti-apoptosis, gene expression and signal modulation molecule, can be used for the treatment of many diseases. This review mainly focuses on the research progresses of hydrogen in v...

متن کامل

Absorption and Release of Hydrogen Gas in Body

Z. Ye Department of Navy Aeromedicine, Second Military Medical University, Shanghai, China Abstract The definition of inert gases is different in the fields of chemistry and physiology. Physiologically, inert gases mainly include hydrogen, helium, and nitrogen and refer to those that cannot react with other substances in human body although hydrogen is a highly active gas in chemistry. Under no...

متن کامل

Structure-property Interaction in Flux Assisted Tungsten Inert Gas Welding of Austenitic Stainless Steel

Austenitic stainless steel SS304 grade was welded with active Tungsten Inert Gas (TIG) welding process by applying a flux paste made of SiO2 powder and acetone. SiO2 flux application improves the weld bead depth with a simultaneous reduction in weld bead width. The improvement in penetration results from arc constriction and reversal of Marangoni convection. Experimental studies revealed that t...

متن کامل

Theoretical Study on Glycosyl Group Effect on Antioxidant Ability of Chrysin Bioflavonoid

Antioxidants are compounds which can prevent biological and chemical substances from oxidative damage by reactive oxygen species. Flavonoids are the most important class of polyphenolic compounds that because of their antioxidant characters possess biological activities and pharmacological effects. Chrysin-6-C-fucopyranoside and chrysin-3-malonyl-6-C-fucopyranoside are mono C-glycosyl derivativ...

متن کامل

Effect of Repeated Repair Metal Inert Gas Welding on Microstructural Properties, Corrosion Resistance, and Wear Behavior of 5083-H116 Aluminum Alloy

The effect of repeated repair welding, shielded with argon, on microstructural properties, corrosion resistance, and dry sliding wear behavior of aluminum alloy 5083/H116 were investigated. Samples were welded by metal inert gas welding method. 100% argon was used to protect fusion zone. Aluminum alloy 5356 was used as the filler metal. The samples for microstructure, corrosion, and wear tests ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012